Hardware Efficient Image Reconstruction for Two-Photon Microscopy

Abel Semma
Computer Engineering
Mentor- Alex Nguyen-Le
Advisor- Luke Theogarajan
Electrical and Computer Engineering
What is a Two-Photon Microscope?

- Area of interest is marked with dye or fluorescent molecular “probe”
- A (infrared) laser excites the a single pixel in the region of interest
- A light sensor captures the resulting intensity, and the point is “scanned”
- Intensity values are then used to produce the image of that area
Tighter Excitation Leads to Better Resolution

Two-photon phenomena leads to tighter excitation volumes and leads to better images.
Building a Wireless Two-Photon Microscope

- Wireless device that can be mounted on a freely moving organism
  - Enable more meaningful experiments
- Miniaturization of all components
  - Requires efficient software/hardware integration
  - Alternative computational paradigms
Data Processing Computational Strategies

- CPU is poorly suited to processing the raw data coming from the microscope
  - CPU is better at diverse sets of computation

- GPU can perform data processing more quickly!
  - GPU is better at performing simple and parallelizable computations
Parallel Programming Analogies

Imagine you want to make 10 sandwiches and each sandwich takes 5 seconds.

- Making 1 sandwich: 5 seconds
- Making 10 sandwiches (sequential): ~50 seconds
- Making 1 sandwich using parallel processing: ~5 seconds
How Parallelism Can Be Applied to Our Problem

- The light sensor picks up intensity values that determines the brightness of each pixel
  - Compute integral of intensity values
- “Thread” executions are independent of each other
- Speedup comes from massive parallelism
Performance Comparison

CPU vs GPU Processing Time

- CPU processing time: 12ms
- GPU processing time: 37ms
The GPU Outperforms The CPU While Processing Large Data Sets

- A sample 1 GB data set was processed in ~12 ms (93 GB/s)!
  - CPU performs same task in ~37ms
- Data rate expected: 4.8 GB/s
Future Goals

- Integrate the algorithm into a Two-Photon Microscope to measure real data output from our Two-Photon Microscope
Thank you!

Alex Nguyen-Le

Dr. Davis

Dr. Theogarajan