Leveraging Microscopy To Characterize Morphology And Autofluorescence Of Lignocellulose Degrading Microbes

By: Corey Kerdman-Andrade
The O’Malley Lab at CNSI
Faculty Advisor: Dr. Michelle O’Malley
Lab Mentor: Patrick Leggieri
Lignocellulose is the Most Abundant Renewable Resource

Lignocellulose
- Dry woody complex in plants
- Most abundant renewable resource

Rumen:
- First of multiple stomachs
- Houses numerous microbes
Using A Co-Culture To Maximize Degradation and Methane Production

1. **Lignocellulose**
 - **Degrade**
 - **Produce** Hydrogen

2. **Fungi**
 - **Produce** Hydrogen

3. **Methanogen (Methanobacterium bryantii)**
 - **Produce** Methane

4. **Archaea**
 - **Produce** Methane
 - **Consume**

5. **S3 (Neocallimastix sp.)**
 - **Produce** Hydrogen

6. **Further Processing**
 - Drugs, Cosmetics, Fuels, Other Commodity Chemicals
Investigating S3: Non-Model Fungal Organisms

Why are these fungi “non-model” organisms?
• Little known about their biological functions
• Very few established methods for analysis

What we need to investigate:
• Morphology (shape and size) - to elucidate spatial organization
• Autofluorescence - to distinguish in mixed culture of methanogens and fungi**

S3 Fungal Cells (Brightfield Microscope)
Autofluorescence: The emission of light from molecules within a biological sample that have been excited by some light source.

- Can be used to easily distinguish constituents in a sample or culture
Characterizing S3 Shape, Size, and Autofluorescence

- Approximately spherical
- Branching legs/roots (rhizoids)
- **Average Size:** 39.41 +/- 1.59 um (diameter)

 ~2/5 of a human hair!

Autofluorescence:

- DAPI Filter
- GFP Filter
- Cy3 Filter
- Cy5 Filter

Leggieri et al. - In preparation
Characterizing Methanogen Shape, Size, and Autofluorescence

- Approximately cylindrical (rod-like)
- **Average Size:** To Be Determined

Excitation - Emission Spectra for Methanogenic Autofluorescence

Dodema and Vogels, 1978
We Can Distinguish Fungi From Methanogens Using Autofluorescence

Saves us an immense amount of time:
- No need to engineer a genetic transformation
- No need to use fluorescent tagging
- No need to use stains

Blue = Methanogens (Wavelength: ~460 nm)
Green = Fungi (Wavelength: ~510 nm)
We Need Thin Films Before We Can Begin Investigating Co-Cultures

S3 Fungal Biofilm

- **Want:** Single-layer film
 - Thicker films = noisy images
- **Parameters:** Substrate volume and concentration, film adhesion to surface

Major Complication!

Need to develop:
- Repeatable method for forming biofilms
- Monolayer formation <100 um

![Diagram showing incoming light and monolayer formation]
Thin Fungal Biofilms Will Enable Further Analysis

- Begin co-culture monolayer film analysis

- Determine what causes the cells to autofluorescing (Proteins? Carbohydrates? Etc.)

- Quantitative characterization of autofluorescence parameters:
 - Fluorescence lifetime
 - Fluorescence emission intensities
 - Fluorescence bleaching
References

Acknowledgements

Dr. Michelle O’Malley
Dr. Megan Valentine
Dr. David Valentine
Dr. Nick Peng
Dr. Susanna Seppala
Patrick Leggieri
St. Elmo Wilken
Jennifer Brown

Tom Lankiewicz
Candice Swift
Igor Podolsky
Justin Yoo
Kendrick Nguyen
Michael Vigers
Stephen Lillington
Kellie Heom
Emily Sun
Nikola Malinov
Mason Gatz
Freda Lababidi

Dr. Samantha Davis
Carli Ruskauff

The O’Malley Lab @ UCSB