# Examining the Effects of Varying pH Conditions on the Early Development of the Painted Sea Urchin, *Lytechinus pictus*

Buyanzaya BuyanUrt Environmental Studies Major & Chemistry Minor

Mentor: Terence Leach

Faculty Advisor: Gretchen Hofmann

Department of EEMB

Funding: NSF





## Global Climate Change Impacts Marine Organisms



Does early exposure to varying pH alter the tolerance of *Lytechinus* pictus larvae to an acute heat stress event?

# Understanding the Physiological Performance of *L. pictus*Under Various Conditions



Successfully raise viable sea urchin offspring



Manipulate multiple variables such as temperature and acidity



Lay down the framework for further research of *L.pictus* 

## Lytechinus pictus as a Model Organism



diverkevin.com

#### Research Methods



1. Spawn Urchins

2. Raise Them in Buckets With Varying pCO2 levels

3. Introduce Heat Stress



# 1. Spawn Urchins



Inject Potassium Chloride



Eggs

Successful Fertilization





## 2. Raise Them in Buckets With Varying pCO2 Levels





| Treatment | pCO2 (µatm) | pН   |
|-----------|-------------|------|
| High pCO2 | 1136.4      | 7.65 |
| Low pCO2  | 586.2       | 7.91 |





#### 3. Introduce Heat Stress

Alive / Dead?
Normal / Abnormal?









#### Parameters Measured



20 - 25 - 30 40 50 60 70 80 90 100



Morphology

Thermal Tolerance

Developmental Success



# Individuals That Develop in More Acidic Conditions Show Higher Tolerance to Thermal Stress



# Individuals That Develop in More Acidic Conditions Show Higher Tolerance to Thermal Stress



# Individuals That Develop in More Acidic Conditions Show Higher Tolerance to Thermal Stress



### Relevance of Tolerance Under Warming Seas



#### Conclusions

- Urchins that developed under more acidic conditions had higher tolerance to a thermal stress event than those that developed under less acidic conditions
- Potential cross tolerance exhibited in urchin individuals
- Abnormal development may soon become prevalent with increase in the frequency of marine heat waves

#### Future Directions

- Analyze morphometrics data
- Explore other parameters such as gene expression, proteins, and lipids



### Acknowledgments



Dr. Gretchen Hofmann













Terence Leach

