Increasing Organic Photovoltaic (OPV) Efficiency

David Nakazono, Physics
Ryan Decrescent, Physics
Jon Schuller, ECE
What is a photovoltaic cell?
Why Organic Photovoltaics (OPVs)?
Multiple Orientations of Organic Polymers

- In-plane Orientation
- Out-of-plane Orientation

Strong Absorbing Axis

Substrate
Momentum-Resolved Spectroscopy

Dielectric

Gold Film (40 nm)

Quartz Coverslip

Surface Plasmon Resonance

Light Wave

θ_{SP}
Measuring Reflectivity

- Dielectric
- Gold Film (40 nm)
- Quartz Coverslip
- Incident Light
- Reflected Light
- Surface Plasmon Resonance

θ_{SP}
Modeling Experiment

Reflectivity Theory at $\lambda = 600\text{nm}$

- R vs. $k_{||}/k_0$
Reflectivity Measurements

Quartz and Gold Reflectivity at $\lambda = 600 \text{nm}$
Locating Plasmon Resonance

Gold Reflectivity at $\lambda = 600\,nm$

Data

Gaussian Fit

$k_{\text{plasmon}} = 1.047754$
Dispersion Relation for Gold Film

Dispersion Curve

k_\parallel vs λ

- Light
- Theory
- Data
Characterizing Organics

- H1 Histone- organic polymer
- In-plane and Out-of-plane orientations
- Demonstrate viability of optimizing orientation to enhance OPV efficiency
Acknowledgements

Sam Willenson
Ryan Decrescent
Steven Brown
Jon Schuller
Gorman Scholar Program
Dean Pierre Wiltzius
Office of the Dean, Math, Life, and Physical Sciences