Identifying the antibody specificity repertoire

Rafael Smith, Joel Bozekowski, Michael Paul, Patrick Daugherty
Department of Chemical Engineering
Daugherty Group
Gorman Scholar
You have a unique antibody repertoire that changes as immune responses occur. Immune factors include pathogens, allergens, and environmental factors. Different antibody repertoires are shown for each category.
By comparing patient’s serums, antibodies can be isolated as disease specific.

Potential Biomarkers:
• develop therapeutics
• diagnostic tools
• mechanisms of pathogenesis
All antibodies bind to a unique antigen dependent on their affinity

Antigen: a foreign substance that induces an immune response
All antibodies bind to a unique antigen dependent on their affinity.

Peptide: chain of amino acids
All antibodies bind to a unique antigen dependent on their affinity.

Epitope: specific region responsible for antibody binding
All antibodies bind to a unique antigen dependent on their affinity.

Definitions to remember:

- **Antigen**: cause of immune response
- **Peptide**: chain of amino acids
- **Epitope**: amino acids responsible for binding
Summer Project: Determine candidates for motifs which are specific to the disease Aged Macular Degeneration (AMD)

Healthy eye Eye with AMD

Macula Damaged Macula

Wet AMD:
• Neo Vascular
• caused by swelling of blood vessels

Dry AMD:
• Geographic Atrophy
• caused by aggregation of Drusen

Life with AMD on the right
Research Goal: Develop a systematic method of obtaining disease specific and medically relevant biomarkers

Identify disease specific peptide

Determine complimentary antigen

Accomplish with bacterial display
Library of peptides
• 7.6 billion unique peptides
• 12 amino acids in length

Engineer bacteria to display peptide library
• Cells display a unique peptide
• Screen for antibody binding
Engineering bacteria to display peptides for antibody identification

Library of peptides
• 7.6 billion unique peptides
• 12 amino acids in length

Engineer bacteria to display peptide library
• Cells display a unique peptide
• Screen for antibody binding

Isolate and sequence these antibody-peptide interactions
Deplete patient’s serum of antibodies that would naturally bind to *E. coli* cells

1. **Grow culture**
 - *E. coli*

2. **Combine serum and bacteria in vials**
 - Serum 1, Serum 2, Serum 3, Serum 4
 - *E. coli*

3. **Some antibodies will bind**

4. **Spin down cells**
 - *E. coli* in serum

5. **Extract the serum**
 - Depleted serum
Combine patient’s serum with a vast library of peptides and magnetically separate cells that bound to antibodies.

Grow genetically engineered culture

Engineered to display peptide

Outer membrane

Peptide

Scaffolding Protein
Combine patient’s serum with a vast library of peptides and magnetically separate cells that bound to antibodies.

Primary Binding Event:
- Peptide Library
- Patient Serum
- Incubate 45 minutes

Secondary Binding Event:
- Peptide Library
- Patient Serum
- Magnetic Beads
- Incubate 45 minutes
Separate cells that bound with antibodies from cells that didn’t bind to antibodies via magnetic separation.
Separate cells that bound with antibodies from cells that didn’t bind to antibodies via magnetic separation.

Any cells that did not bind to an antibody will not have a magnet and can be extracted in the supernatant.
Isolate library DNA so that the peptide can be sequenced and the genetic information accessed.

Isolate the region of the plasmid that encodes for the peptide. Then use PCR to amplify the strands. Use Ilumina NGS to sequence the peptides.

KPFCDCRGLCPF
IVTLYAGCTKCD
KLGCLCTVYPAF
VPPKLPCKGTVL

KPCDCLTVYAG
Process the data by converting peptide sequences into amino acids using bioinformatics

IMUNE

QRHKEQPLPLVM
ASQPSEQPFPSTFC
FASLJKPEQQLTP
HPEQAKPJDKAS

Significant Patterns

EQPxPF
PEQPF
PEQLxPT
PEQxKP

Clustered Patterns

P[EQ]LPxP

[**Motif**]
Process the data by converting peptide sequences into amino acids using bioinformatics.

IMUNE

QRHK**EQPL**LPLVM
ASPQEPFPSTFC
FASLKJ**PEQL**TP
HPEQAKPJD**K**AS

Motif

Clustered Patterns

P[EQ]LPxP

Significant Patterns

EQPxPF
PEQPF
PEQLxPT
PEQxKP
Assess the data by organizing patients into groups and comparing groups for unique sequences.

Group 1: Diseased Patients

- AVCDCFWPRPGW
- YEPWRDGFVDCG
- HWFLSGHEQGWF
- YEPTPWWFKLMF
- WPRPGWRDFVDC
- HRVGREPCDCWH

Group 2: Healthy Patients

- HRVGREPCDCWH
- KCDCVLPFWHRT
- YEPTPWWFKLMF
- AVCDCFWPRPGW
- TVYALPCDCMFH
- CPLFMAHDCDWL

List of epitopes

List of epitopes
Assess the data by organizing patients into groups and comparing groups for unique sequences

Group 1:
Diseased Patients

- AVCDCVALWPGW
- YEPWRDGFVDCG
- HWFLSGHEQGWF
- YEPTPWWFKLMF
- WPRPGWRDFVDC
- HRVGREPCDCWH

Group 2:
Healthy Patients

- HRVGREPCDCWH
- KCDCVLPCFWHRT
- YEPTPWWFKLMF
- AVCDCVALWPGW
- TVYALPCDCMFW
- CPLFMAHDCDWL

Comparison Algorithm
Assess the data by organizing patients into groups and comparing groups for unique sequences

Group 1: Diseased Patients
AVCDCVALWPGW
YEPWRDGFVDCG
HWFLSGHEQGWF
YEPTPWWFKLMF
WPRPGWRDFVDC
HRVGREPCDCWH

Group 2: Healthy Patients
HRVGREPCDCWH
KCDCVLPFWHRT
YEPTPWWFKLMF
AVCDCVALWPGW
TVYALPCDCMFH
CPLFMAHDCDWL

Comparison Algorithm
Assess the data by organizing patients into groups and comparing groups for unique sequences.

Group 1: Diseased Patients

- AVCDCVALWPGW
- YEPWRDGFVDCG
- HWFLSGHEQGWF
- YEPTPWFWFKLMF
- WPRPGWRDFVDC
- HRVGREPCDCWH

Group 2: Healthy Patients

- HRVGREPCDCWH
- KCDCVLPFWHRT
- YEPTPWFWFKLMF
- AVCDCVALWPGW
- TVYALPCDCMFH
- CPLFMAHDCDWL

Comparison Algorithm
Assess the data by organizing patients into groups and comparing groups for unique sequences

Group 1:
Diseased Patients

YEPWRDGFVDCG
HWFLSGHEQGWF
WPRPGWRDFVDC

Potential disease specific epitopes/antibodies
Compare motif enrichment across patients to find AMD-specific reactivity.

Motif 1

Enrichment =
Observed/Expected

CTRL

AMD
Utilizing the database allows us to eliminate motifs that appear AMD specific but are enriched in other samples.

Motif 2
Interesting motif that shows potential AMD specificity

Motif 3

AMD (dry) C Alzheimer’s Other patient samples
AMD (wet)
Use protein databases, BLAST, to search for a possible antigen for the peptide

Epitope for Human Rhinovirus: ExLVVPNI

Antigen-to-Protein Identification

Capsid
(antigen)

Rhinovirus
(common cold)
In the future we hope to discover a primary candidate disease specific epitope

AMD motif candidate
- Currently not close to realistically searching this database for a protein that is specific to AMD

![Unknown Antigen](image)
Acknowledgements

Gorman Program
• Kevin Gorman
• Dean Pierre Wiltzius
• Office of the Dean, Math, Life & Physical Sciences

Daugherty Lab, University of California, Santa Barbara
• Patrick Daugherty
• Joel Bozekowski
• Michael Paul

Center for Science and Engineering Partnerships
• Stephanie Mendes
• Arica Lubin
• Kelly Ibsen
• So many more