Microplasma-based synthesis of nanostructured Pt

Mathew Wanees

Chemical Engineering

Faculty Advisor: Michael Gordon

Department of Chemical Engineering

Gorman Scholars Program

Nanostructured Pt Films for H₂ based Fuel Cell

 Fuel Cell: Produces electricity through electrochemical reaction

•
$$2H_2 + O_2 \rightarrow 2H_2O$$

- Fuel cells rely on Pt as a catalyst for oxygen reduction reaction (ORR)
- Platinum is an expensive metal →
 Use Pt more efficiently → Increase surface area, alloy Pt with other metals

Project Goals

- Utilize novel methods to deposit Pt nanoparticles for fuel cell catalysts → *microplasmas*
- Explore how plasma operating parameters affect Pt deposition:
 - Pressure
 - Pt-precursor Flux
 - Substrate type
 - Electrical configuration
- Characterize Pt films and nanoparticle morphology
- Investigate if Pt can alloyed with Ni
 - Can PtNi be deposited directly and is PtNi catalytically active for ORR?

What is a microplasma?

• Dense plasma confined to very small space \rightarrow 10 μ m – 1 mm

anode

What is a microplasma?

- Dense plasma confined to very small space \rightarrow 10 μ m 1 mm
- Advantages
 - Spray deposit nanostructured materials on any substrate
 - Grow particles to nano/micro structured sizes
 - Tune particle composition \rightarrow make alloys

Pressure = 50 torr

- High voltage (plasma) discharge struck between capillary and substrate
- **Control Parameters**: gas flow rate, pressure, precursor, capillary-stage distance, cell temperature (for sublimation)

Characterization of Samples

Scanning Electron Microscope (SEM) Morphology & thickness

Characterization of Samples

Characterization of Samples

Pt film morphology: Substrate Effect at P = 760 torr

Substrate: Indium Tin Oxide (ITO)

Substrate: Doped Silicon(Si)

- Substrate type affects morphology
- How plasma current travels to ground affects morphology (thin ITO film vs. Si subst)

Control: P = 760 torr, t = 30 min, $T_{Pt} = 45^{\circ}C$ $\Delta d = 3 mm$

P = 50 torr P = 50 torr P = 50 torr P = 50 torr (atm pressure)

Spot Magn Det WD $-1 \mu m$ 00 kV 3.0 20000x SE 4.7

- Pressure significantly affects deposition process and film morphology
- Lower pressure = **lower Pt-precursor flux** \rightarrow thinner film
- Higher pressure \rightarrow ballistic-like aggregation of 'clusters', more porous

Control: Substrate: Si, t = 30 min, $T_{Pt} = 45^{\circ}\text{C}$ $\Delta d = 3 \text{ mm}$

Pt film morphology: Pressure Effects **P = 50 torr**

P = 760 torr (atm pressure)

- Pressure significantly affects deposition process and film morphology
- Lower pressure = **lower Pt-precursor flux** \rightarrow thinner film •
- Higher pressure \rightarrow ballistic-like aggregation of 'clusters', more porous •
- Jet-substrate distance too small → move farther away + new counter-electrode

Control: Substrate: Si, t = 30 min, $T_{Pt} = 45^{\circ}C$ $\Delta d = 3 \text{ mm}$

Pt Nanoparticle Deposition

• Larger capillary substrate distance needed \rightarrow New counter electrode

Pt Nanoparticle Deposition

• Larger capillary substrate distance needed → New counter electrode

→ Achieved Pt nanoparticles: 3-10 nm, average = 4 nm Pt

Summary & Next Steps

- Deposited diverse range of Pt nanostructures and morphologies
- Pressure and capillary substrate distance had greatest effect on Pt morphology
- Achieved average Pt nanoparticle size of 4 nm
- PtNi Alloy synthesis \rightarrow Ni is readily available, less expensive than Pt
- Is PtNi catalytically active for ORR?
- Electrocatalytic testing underway

Acknowledgements

Professor Michael Gordon

Funding

PhD Students: Joffrey Baneton and Katherine Mackie

Pt-film composition: EDX analysis

- Electron beam kicks out core e⁻, outer shell e⁻ fills, characteristic x-ray released
- Chemical elements present + relative abundance

Method to find Optimized Parameters for Nanoparticle Synthesis

- Design of experiments to test Pressure, O₂ addition, Pt-precursor temp. & capillary-substrate distance effects on resulting films
 - Pressure: 760 Torr
 - Deposition without 5% O₂ in plasma jet
 - Pt-precursor sublimation temperature: 40, 45 °C
- Film characterization
 - SEM: morphology, thickness
 - EDX (energy dispersive x-ray spectroscopy): film elemental composition
 - AFM: 30 sec, 1 min deposits to examine if nanoparticles are formed

Light Emission from Microplasma

Low Pressure: $e^- + Ar^\circ \rightarrow Ar^*$ **Red** Light Emission: $Ar^* \rightarrow Ar^\circ + red$

High Pressure: $e^- + Ar^o \rightarrow Ar^{+*} + e^-$ Blue Light Emission $Ar^{+*} \rightarrow Ar^+ + blue$

- Kinetic Energy of electron ionizes Ar to Ar⁺ + e⁻ → Electron cascading → Plasma
- Excited States: $e^- + Ar^{\circ} \rightarrow Ar^*$